
Estimation of Consistent Global Microwave Land Surface Emissivity from
AMSR-E and AMSR2 Observations

SATYA PRAKASH AND HAMID NOROUZI
a

New York City College of Technology, City University of New York, Brooklyn, New York

MARZI AZARDERAKHSH

School of Computer Science and Engineering, Fairleigh Dickinson University, Teaneck, New Jersey

REGINALD BLAKE

New York City College of Technology, City University of New York, Brooklyn, New York

CATHERINE PRIGENT

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères, CNRS, Observatoire de Paris,

Paris, France

REZA KHANBILVARDI

NOAA Center for Earth System Sciences and Remote Sensing Technologies, and City College of the

City University of New York, New York, New York

(Manuscript received 29 July 2017, in final form 28 November 2017)

ABSTRACT

Accurate estimation of passive microwave land surface emissivity (LSE) is crucial for numerical weather

prediction model data assimilation, for microwave retrievals of land precipitation and atmospheric profiles,

and for a better understanding of land surface and subsurface characteristics. In this study, global in-

stantaneous LSE is estimated for a 9-yr period from the Advanced Microwave Scanning Radiometer for

Earth Observing System (AMSR-E) and for a 5-yr period from the Advanced Microwave Scanning Radi-

ometer 2 (AMSR2) sensors. Estimates of LSE from both sensors were obtained by using an updated algo-

rithm that minimizes the discrepancy between the differences in penetration depths from microwave and

infrared remote sensing observations. Concurrent ancillary datasets such as skin temperature from the

Moderate Resolution Imaging Spectroradiometer (MODIS) and profiles of air temperature and humidity

from the Atmospheric Infrared Sounder are used. The latest collection 6 of MODIS skin temperature is used

for the LSE estimation, and the differences between collections 6 and 5 are also comprehensively assessed.

Analyses reveal that the differences between these two versions of infrared-based skin temperatures could

lead to approximately a 0.015 difference in passive microwave LSE values, especially in arid regions. The

comparison of global mean LSE features from the combined use of AMSR-E and AMSR2 with an in-

dependent product—Tool to Estimate Land Surface Emissivity from Microwave to Submillimeter Waves

(TELSEM2)—shows spatial pattern correlations of order 0.92 at all frequencies. However, there are con-

siderable differences in magnitude between these two LSE estimates, possibly because of differences in in-

cidence angles, frequencies, observation times, and ancillary datasets.

1. Introduction

Reliable instantaneous estimates of land surface

emissivity (LSE) are vital for the accurate retrieval of

atmospheric variables, for the study of vegetation phe-

nology, for the understanding of land surface and sub-

surface processes, and for the application of data
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assimilation techniques in numerical weather prediction

models (Prigent et al. 1998; Matzler 2005; Aires et al.

2011; Gerard et al. 2011; Ferraro et al. 2013; Turk et al.

2014; Prakash et al. 2017). Unlike over the ocean, mi-

crowave emissivity over land is highly variable because

of a plethora of surface characteristics that include soil

moisture, soil texture, surface roughness, land-cover

type, and vegetation optical depth.

During the last three decades, substantial progress has

been made in retrieving LSE from passive microwave

(PMW) sensors. Retrieval algorithms are broadly based

on land surface models and direct satellite observations

(Ferraro et al. 2013; Turk et al. 2014; Ringerud et al.

2015; Tian et al. 2015). To model the interaction of

electromagnetic waves with surface components, land

surface model–based retrievals require a large number

of surface parameters that are not easily available or

observable at the global scale. Direct observational-

based algorithms use satellite brightness temperature

(Tb) observations along with corresponding land and

atmospheric properties to retrieve LSE. This type of

retrieval algorithm is supposed to be computationally

easier and more reliable than the land surface model–

based retrievals. Most of the PMW satellite retrievals,

such as Special Sensor Microwave Imager (SSM/I;

Prigent et al. 2006), Advanced Microwave Scanning

Radiometer for Earth Observing System (AMSR-E;

Norouzi et al. 2011), Advanced Microwave Scanning

Radiometer 2 (AMSR2; Prakash et al. 2016), Advanced

Microwave Sounding Unit (AMSU; Karbou et al. 2005),

and Microwave Analysis and Detection of Rain and

Atmospheric Structures (MADRAS; Raju et al.

2013), use this approach for LSE retrieval at the

global scale. These retrievals generally use simultaneous

infrared-based land surface temperature (LST, or skin

temperature) and profiles of air temperature and humidity

to estimate LSE. Estimates of LSE from these PMW

sensors were derived by minimizing atmospheric effects

from Tbs and by the efficient characterization of land

surface geophysical states. However, because of the de-

pendence on infrared-based ancillary data, this type of

retrieval provides LSE estimates only for cloud-free

regions.

Passive microwave LSE estimates have recently been

utilized for various applications such as snowpack de-

tection (Shahroudi and Rossow 2014), detection and

estimation of land precipitation (Birman et al. 2015),

and detection of soil freezing and thawing (Prakash et al.

2017). However, a comprehensive assessment of un-

certainty in these LSE estimates, based on distinct

algorithms and input datasets, is essential for their wider

applicability. The validation of LSE estimates at the

global scale is challenging because of the paucity of

ground-based observations. Moreover, few studies have

been conducted to validate these LSE estimates at se-

lected ground stations or to intercompare different

satellite-based LSE products at the global scale (Tian

et al. 2014; Norouzi et al. 2015a; Prigent et al. 2015).

Although LSE estimates from different algorithms and

sensors reproduce similar large-scale features and sea-

sonal variability, they notably differ from one another at

the monthly time scale. These discrepancies are primarily

due to differences in the configuration of sensors—for

example, frequency, polarization, incident angle, footprint,

and overpass time—as well as the relative differences in

retrieval methods and ancillary datasets. Moreover, most

LSE estimates utilize reanalysis products as ancillary in-

puts that generally need to be interpolated. Therefore, the

use of a common algorithm and ancillary data for multiple

satellite observations would essentially reduce the un-

certainty due to spatiotemporal interpolation and provide

comprehensive maps of the global LSE estimates for a

longer time period (Norouzi et al. 2015a).

Another source of uncertainty in the PMW-based

LSE estimates at the global scale is the direct use of

infrared-based LST, which does not essentially show

diurnal characteristics similar to the PMW-based Tbs.

Infrared-based LST has almost no penetration depth,

whereas PMW-based Tbs have a distinct penetration

depth depending on operating frequencies and vegeta-

tion types. Larger differences were noticed over regions

with soil texture favorable for deeper penetration, for

example, generally over the arid regions with sand

dunes, by the PMW-based Tbs (Prigent et al. 1999;

Norouzi et al. 2012, 2015b). Hence, the inconsistency

between both parameters should be vigilantly ad-

dressed in order to improve the estimation of reliable

LSEs. Norouzi et al. (2012) proposed an efficient

method to alleviate such a discrepancy. After some

simplifications, this method was recently used to re-

trieve LSEs from the AMSR2 sensor (Prakash et al.

2016). Furthermore, since it is the norm for satellite

products to undergo intermittent retrospective pro-

cessing when updated, more accurate versions of

products are released, it is reasonable to update the

LSE estimates with the latest versions of input data-

sets for wider applicability.

The objective of this study is to develop a coherent

instantaneous LSE estimate at the global scale by using

the AMSR-E and AMSR2 sensors. These sensors have

similar sensor characteristics and overpass times. The

latest versions of PMW-based Tbs and concurrent

infrared-based ancillary datasets are used for the re-

trieval of cloud-free LSE. The consistency of the esti-

mated LSE from these two sensors is also investigated

for different land-cover types.
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2. Data and methods

a. AMSR-E and AMSR2 data

The Aqua and the Global Change Observation

Mission–Water (GCOM-W1) satellites are the members

of the afternoon constellation or A-Train, whose equa-

torial crossing times are about 1330/0130 local time. The

Aqua satellite was launched on 4 May 2002 by the Na-

tional Aeronautics and Space Administration (NASA),

and among the sensors it carries are the AMSR-E, the

Atmospheric Infrared Sounder (AIRS), and the Mod-

erateResolution Imaging Spectroradiometer (MODIS).

The overall goal of the Aqua satellite and its suite of

sensors is to study water in the Earth–atmosphere–

biosphere system. However, AMSR-E stopped pro-

ducing data in October 2011. On 18May 2012, the Japan

Aerospace Exploration Agency (JAXA) launched the

GCOM-W1 satellite. The satellite had the AMSR2 in-

strument onboard with the aim of studying changes in

water circulation. AMSR-E was a six-frequency dual-

polarized PMW radiometer that measured Tbs at 6.925,

10.65, 18.7, 23.8, 36.5, and 89.0GHz (Kawanishi et al.

2003). AMSR2 has sensor characteristics similar to those

of its predecessor AMSR-E, but it also included im-

provements such as an additional 7.3-GHz channel for

radiofrequency interference mitigation and also improved

calibration (Okuyama and Imaoka 2015). Like AMSR-E,

AMSR2 has a conical scan mechanism, and it obtains data

over a;1450-km swath with a 558 incidence angle. In this

study, level 3 global swath spatially resampled Tbs at 0.258
spatial resolution for all the frequency channels of AMSR-

E (version 7) from October 2002 to September 2011 and

AMSR2 (version 2.2) from July 2012 to June 2017 were

used. These datasets were obtained from the GCOM-W

research product distribution service at the JAXA.

b. Ancillary satellite data

To mitigate the atmospheric effects from the PMW

measurements of Tbs, near-simultaneous infrared-

based LST and profiles of air temperature and humidity

were used. The latest collection of the MODIS version

6 (V6) cloud-free land surface temperature daily L3

swath global product (e.g., MYD11C1; Wan 2014)

available at a 0.058 climate modeling grid (;5.6 km at

the equator) were used. Large-scale changes in V6 of

the global LST product relative to its predecessor V5

were also assessed. The daily level 3 globally gridded

integrated water vapor and air temperature profiles

from the AIRS infrared-only V6 (e.g., AIRS3STD;

Susskind et al. 2014) available at 18 spatial resolutions
were used. It is to be noted that version 6 of ancillary

data from bothMODIS andAIRS sensors, mounted on

the sun-synchronous Aqua satellite, under clear-sky

conditions were used. Thus, the estimated LSE would

effectively benefit from the concurrence of satellite

observations.

To compare mean features of the estimated LSE,

the Tool to Estimate Land Surface Emissivity from

Microwave to Submillimeter Waves (TELSEM2) cli-

matology was used. TELSEM2 was developed to

provide a reliable parameterization of LSE for fre-

quencies up to 700GHz for advancing data assimilation

of radiances in numerical weather prediction models

(Wang et al. 2017). The emissivity parameterization

between 19 and 85GHz is anchored to a monthly mean

climatology of LSE computed from the SSM/I obser-

vations between 1993 and 2000 at a 0.258 equal-

area grid.

c. Method for LSE estimation

Since the spatial resolutions of PMW-based Tbs and

infrared-based ancillary data are different, all these orbital

data were reprojected to a common equal-area grid (0.258
at the equator). The instantaneous global cloud-free land

surface emissivity « from AMSR-E and AMSR2 Tbs at

polarization p and frequency n conditions is computed

using the following expression (Prigent et al. 2006):

«
(p,n)

5
Tb

(p,n)
2T[2TYe2t(0,H)=m

e2t(0,H)=m(T
s
2TY)

, (1)

where T[and TY are the upward and downward con-

tribution of Tbs from the atmosphere at the surface,

respectively, and they depend on incidence angle, at-

mospheric absorption, and extinction. The atmospheric

temperature and humidity play a key role in the de-

termination of these parameters through a suitable mi-

crowave radiative transfer model (Norouzi et al. 2011).

The term Ts stands for skin temperature or LST, m is the

cosine of the incidence angle, and t denotes the atmo-

spheric opacity between two altitudes. The estimated

cloud-free land emissivity using Eq. (1) may produce

inconsistent LSE values between day and night by up to

12% because of the use of infrared-based LST instead of

effective temperature at the depth of PMW observations.

There exists a considerable difference in the diurnal cycle

amplitude and phase between PMW-based Tbs and

infrared-based LST, primarily in arid regions, where

moisture and vegetation are scarce and cover about 45%

of the global land areas (Norouzi et al. 2012, 2015b). To

minimize this difference and produce more accurate LSE

estimates, a statistical correction factor is applied to the

MODIS LST over arid regions. The correction factor for

theMODISLST is computed for eachmonth based on the
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mean passive microwave Tbs for day and night overpasses

based on the following equation:

TC
s(t) 5 T

s(t)
6

Tb
day(t)

2 Tb
night(t)

2
, (2)

where Tbday(t) and Tbnight(t) are the mean composite Tbs

for all the day and night overpasses for a specific month,

respectively, TC
s(t) is the corrected effective temperature

consistent with PMW data, and Ts(t) is the mean daily skin

temperature. A detailed description of this statistical

method is provided by Prakash et al. (2016). However, this

statistical method is suitable for the estimation of in-

stantaneous cloud-free LSE. Hence, the LSE estimates

presented in this study use an improved algorithm and

common observational input datasets. The errors in LSE

retrieval due to the uncertainties in ancillary atmospheric

datasets were explicitly quantified byNorouzi et al. (2011).

Thus, the use of concurrent ancillary datasets would es-

sentially reduce the uncertainty in the LSE estimates.

3. Results and discussion

a. Comparison between Aqua MODIS V5 and V6
LST products

Since mid-2002, the MODIS sensor on board the

Aqua satellite has used a split-window algorithm to

provide LST products. The MODIS-derived LST

products have been effectively used to retrieve near-

surface air temperature at the regional scale. These re-

trieved near-surface air temperatures are vital for a wide

range of applications in agriculture, hydrology, surface

energy budget analysis, and meteorology (Noi et al.

2016; Didari et al. 2017). In this section, V6 andV5 of the

Aqua MODIS LST products are intercompared for the

period of 2003–15. Figure 1 shows the spatial distribu-

tions of mean daytime (ascending orbits) and nighttime

(descending orbits) LST from V6 and V5 products and

their corresponding differences. The broadscale mean

features such as higher LST over the arid regions and

FIG. 1. Spatial distributions of mean global LSTs (8C) fromMODISAquaV6 and V5 products for day (ascending) and

night (descending) overpasses and their differences averaged for the period from January 2003 to December 2015.
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lower LST over the polar regions, and cooler LST in

nighttime than daytime associated with surface in-

solation due to the solar zenith angle, are similar in both

versions. Larger differences in daytime and nighttime

LST can be seen over the arid regions of Africa and

Australia. However, a notable difference in magnitude

between V6 and V5 can be seen, primarily over the arid

regions. V5 shows 28–48C less LST than V6 during the

daytime over Saudi Arabia, Africa, and South America.

However, such underestimation of LST by V5 is mainly

concentrated over the desert areas (Sahara Desert,

Arabian Desert, and Gobi Desert) in the descending

overpasses. Arid regions are the places where LSE un-

certainty is high, and hence accurate LST is crucial over

these regions (Norouzi et al. 2012). A 3-K difference in

LST could lead to about a 1% error in LSE estimates,

which is about the level of accuracy that is needed in

numerical weather prediction models (Karbou et al.

2005). Moreover, a noticeable overestimation of night-

time LST by V5 when compared with V6 can be ob-

served over the eastern part of the southern polar

regions. The underestimation of LST in V5 over the

arid regions was found to be more than 2K when

compared with ground-based observations. By re-

fining the retrieval algorithm for V6, Wan (2014)

achieved considerably improved LST values. These

differences in LST may produce some significant dif-

ferences in LSE estimates where the new LST product

is utilized.

Table 1 shows the mean daytime and nighttime LST

averaged for the globe (908S–908N), Northern Hemi-

sphere (08–908N), Southern Hemisphere (08–908S),
tropics (308S–308N), northern tropics (08–308N), and

southern tropics (08–308S) from both versions of the LST

product. The global mean daytime (nighttime) LST

from V6 shows 18C (0.28C) more than that from V5,

whereas it is about 28C (0.68C) more in V6 than V5 over

the tropics. Figure 2 presents time series of the mean

differences in LST between both versions averaged over

the globe and over the Northern and Southern Hemi-

spheres for the 13-yr period. A clear seasonal cycle of

LST differences can be observed. The underestimation

of LST by V5 when compared with V6 is largest during

the summer and smallest during the winter season. This

seasonal cycle of LST differences is primarily due to the

shift in the solar zenith angle. The underestimation of

LST by V5 when compared with V6 is larger during

daytime than nighttime.

TABLE 1. Mean MODIS Aqua LST (8C) averaged over the period

from January 2003 to December 2015.

Ascending Descending

V6 V5 V6 V5

Globe (908S–908N) 17.20 16.20 2.19 2.00

Northern Hemisphere (08–908N) 19.78 18.76 3.80 3.33

Southern Hemisphere (08–908S) 12.67 11.67 20.83 20.55

Tropics (308S–308N) 33.03 31.14 15.70 15.08

Northern tropics (08–308N) 36.13 33.92 17.24 16.21

Southern tropics (08–308S) 33.01 31.28 16.45 16.12

FIG. 2. Time series of interannual mean LST difference (8C) between MODISAquaV6 and

V5 products for day (ascending) and night (descending) overpasses averaged over the globe

and Northern and Southern Hemispheres for the period from January 2003 to December 2015.
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b. LSE estimates from AMSR-E and AMSR2 sensors

LST is one of themost important input parameters for

the retrieval of LSE. Since MODIS V6 LST shows a

noticeable difference from its predecessor V5 (primarily

over arid regions), it appears reasonable to characterize

the impact of changes in LST product versions over LSE

estimates. Figure 3 shows the mean monthly global LST

from MODIS V6 and V5 products and their difference

for the month of January 2014. The corresponding

AMSR2-derived LSE at 6.925 and 89GHz for horizon-

tal polarization are also shown. Although the spatial

patterns of LSE estimates are essentially similar with the

use of both versions of the LST product, a considerable

LSE difference up to 0.015 in magnitude is observed at

both frequency channels over the arid regions associated

with the changes in the corresponding LST estimates.

Similarly, a notable difference in LST and LSE esti-

mates can be seen over the southern polar regions. In a

sensitivity analysis, Norouzi et al. (2011) reported that a

5-K difference in LST would result in an LSE retrieval

difference of about 0.025, which is in good agreement

with the present analysis. It is also to be noted that

similar results were found for other periods; however,

only one case study for January 2014 is presented here

for brevity. Hence, the MODIS V6 LST product is used

to estimate LSE throughout this study.

Because of the deeper penetration of lower-frequency

PMW electromagnetic signals over the arid regions with

negligible soil moisture content, significant errors are

generated in LSE retrievals associated with diurnal

variations of LST and Tbs (Prigent et al. 1999; Norouzi

et al. 2012, 2015b). A statistical method was recently

developed to alleviate the discrepancy between passive

microwave Tbs and infrared-based LSTs for diurnal

cycles. This statistical method was successfully applied

to AMSR2 observations, and it produced more reliable

LSE estimates (Prakash et al. 2016). The probability

distribution functions (PDFs) of LSE differences be-

tween ascending and descending orbits of AMSR-E

and AMSR2 over the arid regions for January 2008 and

January 2014, respectively, are shown in Fig. 4 for

FIG. 3. Mean monthly global LSTs (8C) from MODIS Aqua V6 and V5 products and their differences for January 2014. The corre-

sponding AMSR2 global LSEs at 6.925 and 89GHz, and their differences based on theMODIS-derived LST of V5 and V6 are also shown

for horizontal polarization.
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6.925, 18.7, and 89GHz. The uncorrected LSE differ-

ences show a wide range of PDFs, demonstrating an

unanticipated difference in LSE from day to night. As ex-

pected, the PDF peaks of the corrected LSE are near

zero for both sensors because of a negligible diurnal change

in moisture. However, the peak is steeper for lower-

frequency channels than for higher-frequency channels.

This is associated with their relative penetration depths.

FIG. 4. PDFs of differences in LSEbetween ascending and descending orbits ofAMSR-E andAMSR2 observations

before and after applying the correction factor over the global arid regions.

FIG. 5.Mean composite LSE estimates for themonth of January fromAMSR-E (2003–11) andAMSR2 (2013–17)

observations at horizontal polarization for the 6.925-, 18.7-, and 89-GHz channels. The spatial pattern correlations

(Pr) between both estimates are also depicted for each channel.
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Hence, the use of a correction factor with infrared-based

LST over the arid regions (to obtain an effective tem-

perature) essentially improves the LSE estimates.

Figure 5 shows the intercomparison of mean LSE

estimates for the month of January from 9-yr AMSR-E

(2003–11) and 5-yrAMSR2 (2013–17) observations. The

broadscale LSE features are very well depicted by both

estimates. Smaller magnitudes of LSE (e.g.,,0.85) over

the arid regions such as over the Sahara Desert, the

Arabian Desert, and the Gobi Desert were identified by

both sensors. This occurrence is due tominimal vegetation

and negligible moisture over the arid regions. The impact

of seasonal snow cover onLSEestimates over the northern

high-latitude regions are also clearly seen at lower-

(6.925GHz) and higher- (89GHz) frequency channels.

Lower-frequency channels show larger magnitudes of

LSE, whereas higher-frequency channels show smaller

magnitudes of LSE. This result clearly shows that LSE has

potential for the detection of seasonal snow cover and its

associated soil freezing and thawing. However, permanent

ice-covered areas of Greenland and the South Pole show

smaller magnitudes of LSE at all channels. LSE values

from both sensors show spatial pattern correlations of

0.97 for all frequency channels between the climatol-

ogies of the AMSR-E and AMSR2 estimates for the

month of January, which reveal that LSE estimates from

both sensors are consistent because of the use of co-

herent ancillary datasets and algorithms.

Since in situ observations of LSE at the global scale

are lacking, the estimated LSE values are compared

with other satellite-derived estimates. Figure 6 shows

the comparison of climatologies of LSE from 14 years of

AMSR-E and AMSR2 observations with independent

TELSEM2 land emissivity for the month of January. As

TELSEM2 is derived from the SSM/I observations, the

operating frequencies are different from AMSR-E and

AMSR2. LSE estimates from two nearby frequency

channels (one lower frequency and another higher fre-

quency), and their differences are shown for compari-

son. Both climatologies of LSE are in reasonably good

FIG. 6. Spatial distributions of LSE climatology at horizontal polarization from TELSEM2 and the combined

14-yr AMSR-E/AMSR2 estimates along with their differences for the month of January. The Pr between both

estimates are also given.
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agreement with each other and show spatial pattern

correlations of 0.92 at both frequency channels for

the month of January, which suggest that about 15%

of the variance is explained by other factors. It should

also be noted that there are considerable differences

in input datasets and sensor characteristics like inci-

dence angle, frequencies, observation time, and ancillary

data between SSM/I and AMSR-E/AMSR2 estimates.

Moreover, TELSEM2 shows higher magnitudes of LSE

than do the present estimates in the tropics. At higher

latitudes of the Northern Hemisphere, TELSEM2 has

lower magnitudes of LSE than AMSR-E/AMSR2 esti-

mates at higher-frequency channels. Figure 7a shows

the PDFs of LSE differences between TELSEM2 and

the combined AMSR-E and AMSR2 estimates for the

month of January. Both LSE estimates are in good

agreement at lower-frequency channels, but there is a

notable difference between these two estimates at

higher-frequency channels. This differencemight be due

to water vapor and/or cloud contaminations primarily

around the tropics. AIRS atmospheric information has

its own uncertainty that could affect the accuracy of LSE

estimates at higher frequencies, however, the use of

concurrent water vapor and air temperature observa-

tions instead of reanalysis data that are used inTELSEM2

should benefit the present LSE retrieval. The corre-

sponding mean differences in LSE between these two

estimates for four different land-cover types are pre-

sented in Fig. 7b. The overestimation of LSE by the

present estimates when compared with TELSEM2 lin-

early decreases with a decrease in vegetation coverage

and notably underestimates LSE over the desert regions

during January. The LSE measurements from the air-

craft campaigns and ground observations primarily over

the arid regions are essential to validate satellite-based

estimates for further refinements.

Figure 8 shows the PDFs of LSE estimates at hori-

zontal and vertical polarizations of the AMSR-E and

AMSR2 sensors for the arid regions. Both sensors

exhibit similar characteristics, suggesting the LSE

FIG. 7. (a) Differences in the PDFs of mean LSE climatologies from TELSEM2 and the combined AMSR-E/

AMSR2 estimates at horizontal polarization for the month of January and (b) the corresponding mean difference

for four distinct land-cover types, viz., evergreen rain forest, deciduous woodland, grassland, and desert regions.

FIG. 8. PDFs of LSE from AMSR-E and AMSR2 observations for vertical and horizontal polarizations averaged

over the global arid regions.
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estimates are consistent. In general, LSE shows larger

variability associated with larger PDFs at vertical po-

larization than at horizontal polarization. The differ-

ences are largest for the lower-frequency channels, and

vice versa. These results are consistent with those from

earlier studies by Prigent et al. (1999). Figure 9 presents

the variations in mean LSE difference between vertical

and horizontal polarizations for four land-cover types

as a function of operating frequencies of the AMSR-E

and AMSR2 sensors. Both sensors show the same kind

of variations in LSE differences with frequency chan-

nels. The differences are smallest for the evergreen rain

forest and largest for the desert regions. The LSE dif-

ference between vertical and horizontal polariza-

tions overall decreases with the increase in frequency

for all four land-cover types because of changes in

FIG. 9. Variations in mean emissivity differences between vertical and horizontal polariza-

tions for four land-cover types as a function of operating frequencies of the AMSR-E and

AMSR2 sensors.

FIG. 10. Monthly variations of emissivity polarization differences (V 2 H) at different frequency channels of

AMSR-E/AMSR2 for four land-cover types of the Northern Hemisphere.
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penetration depths (Norouzi et al. 2015a). The monthly

variations of LSE polarization differences for the four

land-cover types in the Northern Hemisphere are pre-

sented in Fig. 10 after combining AMSR-E and AMSR2

estimates. As expected, evergreen rain forest and desert

regions show negligible seasonal variations in LSE as-

sociated with an almost homogeneous surface rough-

ness, whereas deciduous woodland and grassland show

considerable seasonal variations of LSE at all frequency

channels. The seasonal changes in LSE are associated

with the change in biomass density, which is at a mini-

mum during the Northern Hemisphere summer for de-

ciduous woodland and grassland areas.

Because of the sensitivity of LSE with seasonal snow

cover, LSE estimates were successfully utilized for high-

latitude snowpack detection (Shahroudi and Rossow

2014) and also for soil freeze–thaw state detection

(Prakash et al. 2017; Shati et al. 2018). These studies

demonstrated that the LSE differences between lower-

and higher-frequency channels are good indicators for

such analyses. Figure 11 shows the time series of daily

nighttime upper-layer soil temperature (e.g., at 5-cm

depth) from ground-based observations and the corre-

sponding LSE difference between 6.925 and 89GHz at

horizontal polarization for a specific location in Alaska.

Two years, 2009 and 2013, were selected from AMSR-E

and AMSR2 spans. The figure shows that colder soil

temperature during the Northern Hemisphere winter

corresponds to larger differences in LSE estimates, and

warmer soil temperature during the Northern Hemi-

sphere summer corresponds to smaller differences in

LSE. The range of LSE variations is smaller for the

warmer soil than for the colder soil. Hence, the present

consistent longer period LSE estimates would essen-

tially be useful for global freeze–thaw and snowpack

detection and for other land surface applications.

4. Conclusions

In this study, global cloud-free instantaneous LSEs

were estimated for the period from October 2002 to

September 2011 from the AMSR-E sensor and for the

period from July 2012 to June 2017 from the AMSR2

sensor by using an updated algorithm that alleviated the

discrepancy between microwave and infrared observa-

tions due to differences in penetration depths. Simulta-

neous ancillary datasets from the MODIS and AIRS

sensors were used for the computation of LSEs; this

approach essentially reduced the error of the estimates.

The impact of changes in LST on LSE estimates was also

assessed by the use of two consecutive versions (V6 and

V5) of the LST product that showed noticeable differ-

ences over the arid regions. Hence, a careful review

of previous findings and products that were based on

FIG. 11. Time series of daily nighttime (a) 5-cm soil temperature from ground observations and (b) satellite-

derived emissivity differences between 6.925 and 89GHz at horizontal polarization for 2009 and 2013 over

a SNOTEL site in Alaska.
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earlier version of MODIS LST seems to be necessary.

The consistency of LSE estimated by both sensors was

examined for different land-cover types. The compari-

son of global mean LSE features from the combined

use of AMSR-E and AMSR2 with an independent

product—TELSEM2—showed spatial pattern correla-

tions on the order of 0.92 at all the frequencies for the

month of January. The seasonal variations of the esti-

mated LSEwere also investigated for distinct land-cover

types. These consistent LSE estimates for a 14-yr period

are promising and potentially beneficial for global freeze–

thaw and snowpack detection and for other land surface

applications. Additionally, the synergism of other avail-

able PMW sensors may provide comprehensive global

multisatellite LSE estimates to better understand its

spatiotemporal variability and underlying processes.

Furthermore, extensive efforts are needed for the com-

putation of LSE under all weather conditions by taking

into account the effect of clouds in the radiative transfer

model and also to comprehensively quantify the un-

certainty of LSE estimates.
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